Simulation Computation of Repulsion Forces in the CPS Conductive Loop

Shu Lusi / Guo Qiyi / Huang Shize / Qiu Xianzhe

CPS 导电回路电动斥力的仿真计算

舒露丝1/郭其一1/黄世泽2/仇仙者3

- 1. 同济大学电子与信息工程学院,上海200331
- 2. 同济大学道路与交通工程教育部重点实验室,上海 200331

3. 浙江中凯科技股份有限公司,浙江温州 325604

摘 要 额定运行短路分断能力(*I*_{es}) 是 CPS 的一个重要技术指标。影响短路分断能力的因素 很多 ,其中一个重要的因素就是触头系统的电动斥力 ,在短路分断过程中 ,电动斥力随着电流 和距离的变化而变化 ,因此准确地计算触头电动斥力对分析提高 CPS 的短路分断能力有重要 意义。基于电流-磁场-电动斥力的关系方程 运用有限元分析软件 ANSYS 分析电流、导电回路 结构、动静触头位置对电动斥力的影响 ,为后期 KB0 产品的设计和优化提供参考。 关键词 动静触头 有限元仿真 电动斥力

DOI:10.13857/j.cnki.cn11-5589/tu.2015.05.008

Abstract Rated-operation short-circuit breaking capacity (I_{cs}) is an important technical index of CPS. There are many factors that influence the short-circuit breaking capacity , like the repulsion force of the contact system , which is an important factor. The repulsion force varies with the current and distance during short-circuit breaking. Therefore , accurately computing the repulsion force of the contact system is very helpful for improving the short-circuit breaking capacity of CPS. Based on the equation describing the relation between the current , magnetic field and the repulsion force , the finite element analysis software ANSYS is employed to simulate the system. In addition , the effect of the current , the structure of the conductive loop as well as the positions of the moving and fixed contacts on the repulsion force are analyzed to provide theoretical foundation for subsequent design and optimization of the KB0 products.

Keywords moving and fixed contacts, finite element analysis, repulsion force

0 引言

控制与保护开关电器(CPS) 是一种同时具备控制与保护功能的集成式的模块化多功能低压电器, 集合了断路器、接触器、热继电器及隔离器的功能^[1] 在国内的众多 CPS 产品中, KB0 系列出现较早。*I*_{es}作为 CPS 的一个重要技术指标,在短路电流 产生时,要求其能够在设定的时间内承受相应的电 动力和温升等作用。触头系统的电动斥力与短路 分断能力密切相关,在短路分断过程中,电动斥力 随着电流和距离等因素的改变不断变化,因此准确 地计算触头电动斥力,研究其在短路电流作用下的 影响因素尤为重要。

直接以 Holm 公式为基础,分析求得触头间的 电动斥力,忽略了触头间的电流线收缩现象,这种 方法已经对模型进行简化,使得分析结果与实际情 况存在一定的差距,进而影响磁场分布^[2]。通过建 立圆柱体导电桥模型求得电动斥力,联立电流-磁 场-电动斥力方程求解,对触头形状、导电斑点以及 铁磁物质等因素对电动斥力的影响作了深入仿真 计算与验证^[3-5]。

传统的分析方法主要通过估算以及经验,针对 可能影响电动斥力的要素进行定性分析。本文结 合虚拟样机仿真技术^[6] 与数字化设计技术,对 KBO 系列的 CPS 的短路分断性能进行分析,提出优化设 计方案,辅助分析工具选用有限元分析软件 AN-SYS 获取稳态电流及静态工作气隙下的触头间霍 姆力及导电回路电动斥力。动静触头的接触点采 用的是圆柱体导电桥模型 使电流分布更加接近实 际,且对可能影响导电回路电动斥力的因素采取定 量分析。在已有的研究基础上针对触头位置、导电 回路结构等不同因素对电动斥力的影响进行仿真 分析,旨在提高设计效率。经过模拟仿真,基本确 立试验方向,不再像过去一样盲目试验,在一定程 度上节约了开销。对于优化后的低压电器,期望能 够获得高效的触头分断能力,电器寿命得以延长, 全面提高低压电器的可靠性。

1 接触组的基本原理及电动斥力理论计算

1.1 接触组结构

KB0 系列 CPS 主体三大构成部件为操作机构、 电磁传动机构和主电路接触组,三大部件各成独立 的模块单元,采用立体布置形式,在较小体积内即 可紧凑而合理地装配于一体。接触组的性能直接 影响 CPS 是否能够及时可靠地开合。主电路接触 组的构成示意图如图 1 所示。触头系统主要由动、 静导电杆及其上的动、静触头、触头支持、宝塔弹簧 等构成。其中动、静触头各采用双断点结构,用以 传递主回路电流;触头支持用于固定动导电杆并联 动铝推杆及电磁传动机构的顶杆;宝塔弹簧用以对 动触头产生超程和接触压力,锁扣用于对铝推杆进 行限位并与操作机构的短路推杆联动。触头系统 的构成示意图如图 2 所示。

1.2 接触组短路分断原理

当短路电流产生时,其电流幅值以及允许电流 流过的时段应远小于预期值,防止由于热效应和电 磁干扰引起的对电气设备的损坏,延长小型断路器

的使用寿命。电弧分断过程示意图见图3。

CPS 接触组的电弧分断过程一般可分为 4 个阶段(如图 4 所示)。

 1) 从 0 时刻点产生短路电流到 t₀ 时刻触头开始动作,由于触头依旧处于接触状态,此时的电弧 电压恒定为 0。 2) t₀ ~ t₁ 时间段内触头斥开产生电弧,但电弧 不会马上离开触头。在电弧停滞阶段,电弧电压在 数值上变化不大,与级间电压降近似。

3)到 t₁ 瞬时,电弧被拉长,且自励磁场产生了 一定的电动力,在电动力的作用下,电弧向灭弧栅 片运动。与此同时,电弧电压快速增大,电弧电压 的增长速度直接影响电弧运动的速度以及电弧被 引入灭弧栅片的时刻点 t₂ t₂ ~ t₁ 为电弧运动时间。

4) 电弧被引入灭弧栅片后,电弧电压达到峰值 *u_{aremax}*,且大于电源电压的瞬时值。电弧在*t*₃时刻熄 灭,电流值为0。

可见,若能够合理地控制电动斥力的大小,就 可以有效地缩短电弧停滞时间,使电弧电压快速增 大,增强断路器的限流分断能力。

1.3 电动斥力的理论分析计算

触头系统的电动斥力主要由两部分组成: 霍姆 力 F_{H} 和洛仑兹力 F_{L} ,如图 5 所示。图 5 中 动触桥 所受到的总的电磁斥力等于触头回路电动斥力 F_{L} 与两个触点间的电动斥力 F_{H} 之和 即 $F = F_{L} + 2F_{H}$ 。

图 5 双断点触头的触头斥力

两金属接触时,只有小部分的金属接触或准金 属接触的斑点才能导电^[7]。电流流经导电斑点时, 电流线会收缩,以接触面为基准,将电动力分解成 平行与垂直两个方向上的分力。由图6可知,水平 方向的分力抵消后不计,垂直方向的分力则叠加, 即触头间的电动斥力。

图6 触头间电动斥力

'姆(Holm) 力可由式(1) 进行计算。
$$F_{H} = \frac{\mu_{0}i^{2}}{4\pi} \ln\left(\frac{R}{r}\right)$$
(1)

式中,*i*为触头系统流过的电流,A;μ₀为真空磁导率,N/A²; *R*为触头半径,mm; *r*为接触点半径,mm。

接触点的半径 r 由触头材料、接触压力、触头接触系数等决定,计算公式见式(2)。

$$r = \sqrt{\frac{F_k}{\pi\xi H}} \tag{2}$$

式中, F_k 为 触头接触压力 N; ξ 系数的确定依 据触头表面的接触情况而定,在 0.3~0.6 之间,可 取 0.45; *H* 为 触头材料的布氏硬度, N/mm^2 。

由电流线收缩产生的霍姆力 F_H 只存在于动静 触头保持金属接触状态的时间段内,即在短路分断 过程中,当动静触头分开后,该力就不存在了。

通过式(1)可求得触头间的电动斥力,通过式 (3)可获得导电回路的电动斥力^[8]。

$$F = 2 \times 10^{-7} \, \frac{i_1 i_2}{d} A l K \tag{3}$$

式中, i_1 、 i_2 为两导体的电流,A; d为导体间的 距离,mm; A为由于两导体长度有限产生的系数; l为导体的长度,mm; K为矩形截面平行导体的截面 因子。

2 基于 ANSYS 的电动斥力仿真

2.1 基于 ANSYS 的电动斥力仿真步骤

1) 定义单元类型 SOLID97 和 INFIN111。

2) 对动静导电杆、触头、灭弧栅片等实体进行 建模,另外在周围设置空气环境,以整体为分析 对象。

3) 定义材料性能 如相对磁导率、电阻率。

4) 给三维实体模型分配材料并建立不同的组件以便分析计算,导电回路的单元类型为 SOLID97。

5) 设置网格密度并划分网格。

 6) 改变单元类型,初始设定为 SOLID97,后期改为 SOLID69,以期对电流传导的分析更有效、 准确^[9]。

7) 对电流传导分析施加边界条件和载荷。耦 合静导电杆电流流入端面的 VOTL 自由度,并在该 端面一个关键点上施加励磁电流;在静导电杆电流 流出端面加 VOTL 约束,设置 VOTL =0。

8) 进行电流传导分析求得电流密度分布。

9) 进行磁场分析 将之前修改的单元类型恢复

为 SOLID97。

10) 进行磁场分析,对模型施加边界条件和载荷。以之前电流传导分析中得出的电流密度作为载荷 将无限表面(INF)标志施加于空气模型的外界面,最后再设定约束矢量 MVP 模拟通量线垂直或平行。

11) 求解,计算导电回路的电动斥力。

2.2 详细计算结果

本文的分析都以 KB0 系列的 CPS 产品为依据, 模型采用 C 框架的结构进行仿真分析。实体模型 包括:静导电杆、动导电杆、静触头、动触头、灭弧栅 片,触头支持的金属部分等。由于几何模型的形状 不规则,因此采用自由剖分。图 7 为接触组触头系 统的网格剖分图。

图7 接触组触头系统有限元模型

耦合静导电杆一端面的 VOLT 自由度并在一个 关键点上施加励磁电流 AMPS = 10 500A 在约束导 体另一端面的 VOLT 为 0 后开始电流传导分析。所 得到导电回路部分电流密度矢量分布如图 8 所示。

图 8 导电回路电流密度矢量分布

通过 LDREAD 命令把电场分析所得的电流密 度作为激励读入磁场分析中。最后施加通量线垂 直、平行条件以及远场单元无限表面标志,进行磁 场分析。图9为动导电杆电动斥力分布图。

图 9 动导电回路电动斥力分布矢量图

利用有限元法和公式法分别计算出的触头间 电动斥力(由于是双断点,所以触头力×2)及导电 回路电动斥力见表2,参数设置见表1。

表1	仿真参数设置		
仿真参数		取值	
电流/kA		10.5	
触头截面半径/mm		2.5	
触头高度/mm		2	
导电桥半径/mm		0.185 5	
导电桥高度/mm		0.2	
导电桥数目		1	
导电桥位置		触头中心	

依据表 2,可以发现触头间的电动斥力与电流 的平方呈现正比关系^[10]。从数据对比可以看出,若 要分析作用在动触头和动导电杆上的电动斥力,使 用这两种方法,得出的结果偏差不大,两者的相对 误差基本能够控制在6%,造成该差异的原因可能 是由于接触系数不同;导电回路的电动斥力误差在

表 2 有限元法和公式法计算出的触头间电动斥力比较

	电流/kA	触头力/N	回路力/N	合计/N		电流/kA	触头力/N	回路力/N	合计/N
有限元法	0.54	0. 143	0.040	0. 183	公式法	0. 54	0.152	0.037	0. 189
	0.63	0. 194	0.054	0. 248		0.63	0.206	0.050	0.256
	0.72	0.254	0.070	0.324		0.72	0.270	0.066	0.336
	0.81	0.321	0.089	0.410		0.81	0.342	0.083	0. 425
	0.9	0.396	0.112	0. 508		0.9	0.422	0.105	0. 527
	10.5	53.92	14.99	68.91		10.5	57.36	14.00	71.36
	15	110.04	30. 58	140. 6		15	117.04	28.58	145.6
	24	281.7	78.30	360.0		24	299.6	73.16	362. 8

30 www.znjzdq.cn

8% 左右,主要原因可能是在用公式法计算电动斥力 时忽略了触头、灭弧栅片等触头系统的金属材料的 影响。在触头未分开前,触头力在总的电动斥力 中相对于回路力所占比例较大,该力产生的机理 就是触头间电流收缩,所占比重达到80% 左右。

3 导电回路结构对电动斥力的影响

在分析了模型电动斥力的基础上,进一步定 量分析计算导电回路结构对电动斥力变化的影 响。在改变导电回路结构的同时要保持通过导电 回路的电流密度大小和方向不变,图 10 所示为导 电回路电流密度矢量图,定性分析结构对电动斥 力的影响。

后期对 KB0 系列产品的设计优化中,主要改 变静导电回路的结构,例如主回路接触组中的进 线板,新模型进线板部分,如图 11 所示。在其他 参数不变的情况下,改变电流大小,通过 ANSYS 仿真求出电动斥力,结果见图 12。可以看出,新的 结构会产生较大的电动斥力,与原设计结构相比, 电动斥力的增大值几乎恒定,两条曲线基本呈平 行关系。电动斥力变化率的变化趋势基本保持同 步,随着导电回路电流的增大,电动斥力变化率 减小。

图 12 改变导电回路结构对电动斥力的影响

4 动静触头位置对电动斥力的影响

原模型动静触头中心点之间的距离 x 为 23mm 现改变触头的位置,导电回路的其他参数保 持不变,依次左右同步移动,电流方向如图 13 所 示,同时设定电流恒定为 10.5kA ,利用 ANSYS 仿真 求得电动斥力的大小。仿真结果见图 14 ,从图 14 中可以看出,随着两个触头之间的距离增加,电动 斥力缓慢增加,呈现一定的线性关系。

图 13 动静触头位置示意图

图 14 改变触头位置对导电回路电动斥力的影响

产生这种现象的原因分析如下:由式(1)可知, 触头位置改变,不会影响霍姆力的大小,即 F_H 不变。 同时根据 Frick 公式(3),触头位置改变会使导体长 度改变,直接影响 F_L 的大小,并且呈现一定的线性 关系。当动静触头之间的间距增加,导体长度增 大,使得动导电板上总的电动斥力变大,有利于提 高断路器的电动稳定性。反之,当动静触头间的距 离减小,动导电板所受的电动斥力和总的电动斥力 会增大。

5 结束语

经 ANSYS 有限元法与公式法的比较可知,公式 法更适用于简单模型,ANSYS 仿真结果更精确,电 流和磁场的密度分布显示更直观。从表 2 的分析可 得 随着电流的增加,触头力的差异与电动斥力的 误差都明显增大,因此可采用导电桥模型进行电动 斥力的数值分析(当电流大于 24kA)。通过采用新 的导电回路结构以及改变触头位置的方法,可以发

现在 CPS 接触组通过较大的短路电流时,触头电磁 力明显增大,有助于动静触头快速斥开。但触头电 磁力并非越大越好,因为电磁力过大易引起机械振 动,不利于设备安全可靠地运行。

参考文献

- [1] 黄世泽,郭其一,章敏娟,朱奇敏.控制与保护开关电器电磁 机构运动轨迹仿真研究[J].低压电器 2013,11:5-9.
- [2] 孙海涛 陈德桂,李兴文,刘庆江.低压断路器触头系统三维 磁场的可视化分析[J].电工技术学报 2002,17(4):31-35.
- [3] 刘颖异 陈德桂 ,李兴文等. 用三维有限元方法研究影响框架 断路器电动斥力的因素 [J]. 中国电机工程学报 ,2005 ,16: 63-67.
- [4] 李兴文 陈德桂 刘洪武等. 触头间电动斥力的三维有限元分

析[J].高压电器 2004 01:53-55.

- [5] 李兴文 陈德桂 李志鹏,刘洪武 向洪岗. 考虑触头间电流收 缩影响的低压塑壳断路器中电动斥力分析[J]. 电工技术学 报 2004,10:1-5.
- [6] 黄世泽 郭其一, 贺雅洁, 窦晓斌, 仇仙者. 控制与保护开关电器操作机构动力学仿真研究 [J]. 电器与能效管理技术, 2014 20:24-28.
- [7] 张冠生. 低压电器. 北京: 中国工业出版社,1961.
- [8] 陆俭国 ,仲明振 陈德桂等. 中国电气工程大典第 11 卷. 配电 工程. 北京: 中国电力出版社 2009.
- [9] 商跃进. 有限元原理与 ANSYS 应用指南[M]. 北京:清华大 学出版社 2005.
- [10] 李兴文 陈德桂 向洪岗 李志鹏 刘洪武. 低压塑壳断路器中 电动斥力的三维有限元非线性分析与实验研究[J]. 中国电 机工程学报 2004 24:150-155.

(上接第26页)

6 结束语

基于控制与保护开关的智能配电系统已经在 示范工程中经过长时间的通电运行,连续长时间测 试结果表明:该智能配电系统运行性能稳定,网络 状况稳定。

本文基于控制与保护开关电器构建集监视、控 制、保护等功能于一体的智能配电系统。该系统是 智能电网的重要组成部分,不仅实现了传统的配电 系统的功能,而且还集成了能源管理系统、智能消 防系统以及太阳能光伏发电系统。该系统的实施, 将会提高电力系统可靠性、实时性和实用性,为工 厂的信息化建设奠定坚实的基础。

参考文献

- [1] 吴潇俊,黄世泽,郭其一,杨阳. 基于可通信控制与保护开关的智能配电系统设计[J]. 低压电器 2013,11:46-49.
- [2] 陈德仙. 基于 Modbus 现场总线的智能配电控制系统研究与

实现[D]. 浙江工业大学,2009.

- [3] 胡景泰. 电控系统控制与保护统一理论及其信息化研究[D]. 上海: 同济大学 2006.
- [4] 张扬 柴熠. 基于 3S-Net 的楼宇智能配电系统[J]. 低压电器 2006(4):40-45.
- [5] 史旺旺 陈虹,刘敏华,等.智能建筑变电站综合自动化的分析和实施[J].电力自动化设备 2003 3(10):46-47.
- [6] 朱懿 蒋念平. Modbus 协议在工业控制系统中的应用[J].微计算机信息 2006(22): 118-120.
- [7] 陈德仙,郑登峰,俞国勇,刘彦杰. 基于 MODBUS 协议的智能 配电系统设计[J]. 江苏电器 2007 04:25-28.
- [8] 唐喜,孟岩.应用于电网故障信息关联的以太网通信协议[J].电力自动化设备 2006 26(9):61-64.
- [9] 王春. 基于组态软件的 PLC 实验教学系统 [D]. 四川: 西华大 学 2009.
- [10] 国家技术监督局,中华人民共和国建设部.高层民用建筑设 计防火规范(2005 年版)(GB50045-95)[S].中国计划出版 社 2005.
- [11] 马一鸣,马龙翔.太阳能光伏发电与建筑一体化[J].沈阳工 程学院学报(自然科学版) 2011 01:9-12.

《公共建筑节能设计标准》(GB 50189-2015)本月起实施

《公共建筑节能设计标准》为国家标准,编号 GB 50189-2015,自 2015 年 10 月 1 日起实施。其中,第 3.2.1、3.2.7、3.3.1、3.3、2、3.3、7、4.1.1、4.2.2、4.2.3、4.2.5、4.2.8、4.2.10、4.2.14、4.2.17、4.2.19、 4.5.2、4.5.4、4.5.6条为强制性条文,必须严格执行。原《公共建筑节能设计标准》(GB 50189 – 2005)同时 废止。

32 www.znjzdq.cn